BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251106T151718EST-6696HBh78C@132.216.98.100 DTSTAMP:20251106T201718Z DESCRIPTION:\n \n \n \n \n \n \n \n \n \n \n \n 📍 LIEU / PLACE\n Hybride - CRM\, Salle / Room 6214\, Pavillon André Aisenstadt\n \n ✒️ TITRE / TITLE\n\n Statistical Frameworks for Trustworthy Machine Learning: Privacy\, Uncertainty\, and O nline Inference\n \n 📄 RÉSUMÉ / ABSTRACT\n\n Trustworthy machine learning req uires rigorous privacy protection and valid uncertainty quantification\, e specially in modern streaming settings. We present two complementary advan ces.\n First\, we extend Gaussian Differential Privacy (GDP) to general Rie mannian manifolds. Leveraging the Bishop-Gromov comparison theorem\, we co nstruct a Riemannian Gaussian mechanism based on geodesic distance and cal ibrate the privacy parameter $\mu$ to achieve GDP under bounded Ricci curv ature. We provide practical calibration methods\, an efficient procedure o n one-dimensional manifolds and an MCMC-based algorithm on constant-curvat ure spaces. We demonstrate improved utility (e.g.\, on the sphere $S^d$) r elative to Riemannian Laplace mechanisms.\n Second\, we develop online infe rence for smoothed quantile regression\, introducing an incremental updati ng estimator for low-dimensional models and an online debiased lasso for h igh-dimensional sparse settings. The procedures use only current data and compact history summaries\, correct online approximation error\, and deliv er asymptotically valid confidence intervals and tests. Simulations and re al data analyses (e.g.\, bike-sharing demand and index-fund data) illustra te reliability and scalability.\n Together\, these results provide privacy- preserving data access and statistically sound\, streaming-ready inference \, core ingredients of trustworthy machine learning.\n \n 🍷 Une réception vi ns et fromages suivra / A wine and cheese reception will follow.\n \n \n \n \n \n \n \n \n \n \n \n\n\n \n\n\n \n \n \n \n \n \n \n Lien ZOOM Link\n \n \n \n \n \n \n \n\n DTSTART:20251017T193000Z DTEND:20251017T203000Z SUMMARY:Linglong Kong (University of Alberta) URL:/mathstat/channels/event/linglong-kong-university- alberta-368399 END:VEVENT END:VCALENDAR