BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250726T203308EDT-7204AE9flX@132.216.98.100 DTSTAMP:20250727T003308Z DESCRIPTION:Informal Systems Seminar (ISS)\, Centre for Intelligent Machine s (CIM) and Groupe d'Etudes et de Recherche en Analyse des Decisions (GERA D)\n\nSpeaker: Raihan Seraj\n \n ** Note that this is a hybrid event.\n ** No te that this seminar does not take place at the usual time and location of ISS seminars.\n \n Zoom Link\n Meeting ID: 845 1388 1004       \n Passcode: V ISS\n\n\n Abstract:\n\nHuman cognitive states\, such as mental workload\, p lay a pivotal role in decision making processes within human automation te ams. Although subjective measures of mental workload can be obtained using standard questionnaires like the NASA-TLX\, their administration is often impractical as it interferes with the primary tasks of the human operator . Therefore\, it is of interest to estimate these subjective measures from less intrusive observations. Evidence suggests that mental workload is a dynamic process so incorporating historical measurements could reduce its estimation error. Additionally\, the estimation of operator performance in human automation teams is essential in optimizing task effectiveness and facilitating efficient resource allocation. In this work\, we present and compare different dynamic schemes to estimate an operator’s performance on classification tasks\, i.e.\, classification accuracy and her subjective ratings on subscales of the NASA-TLX questionnaire\, which measure mental workload across multiple dimensions. These schemes differ in the informati on available for estimation. We test these schemes on data collected from a scenario where a human and an automation perform a series of classificat ion tasks for simulated mobile objects. Our analysis of the interaction da ta and the estimation schemes indicates that employing dynamic estimation for certain NASA-TLX subscale ratings leads to decreased estimation errors . However\, similar conclusions cannot be drawn with certainty for the est imation of the operator classification accuracy.\n \n Bio:  \n\nRaihan Seraj is a PhD candidate in the Department of Electrical and Computer Engineeri ng\, 51³Ô¹ÏÍø.\n \n \n \n \n  \n DTSTART:20240605T140000Z DTEND:20240605T150000Z LOCATION:Room 267\, Macdonald Engineering Building\, CA\, QC\, Montreal\, H 3A 0C3\, 817 rue Sherbrooke Ouest SUMMARY:Dynamic Estimation of Mental Workload and Operator Accuracy in Huma n Automation Teams URL:/cim/channels/event/dynamic-estimation-mental-work load-and-operator-accuracy-human-automation-teams-357476 END:VEVENT END:VCALENDAR