BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250813T180102EDT-4465tdpNH1@132.216.98.100 DTSTAMP:20250813T220102Z DESCRIPTION:Braid group symmetries of Grassmannian cluster algebras.\n\nWe define an action of the $k$-strand braid group on the set of cluster varia bles for the Grassmannian Gr$(k\,n)$\, whenever $k$ divides $n$. The actio n sends clusters to clusters\, preserving the underlying quivers\, definin g a homomorphism from the braid group to the cluster modular group for Gr$ (k\,n)$. Then we apply our results to the Grassmannian Gr$(3\,9)$. We prov e the $n=9$ case of a conjecture of Fomin-Pylyavskyy describing the cluste r combinatorics for Gr$(3\,n)$\, in terms of Kuperberg's basis of non-elli ptic webs.\n DTSTART:20170317T173000Z DTEND:20170317T183000Z LOCATION:PK-4323\, CA\, PHI Centre & 51³Ô¹ÏÍø\, CA SUMMARY:Chris Fraser\, Indiana University - Purdue University Indianapolis URL:/channels/event/chris-fraser-indiana-university-pu rdue-university-indianapolis-266915 END:VEVENT END:VCALENDAR